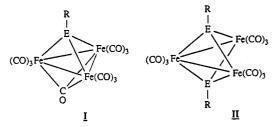
Contribution from the Departments of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, and The University of Delaware, Newark, Delaware 19716

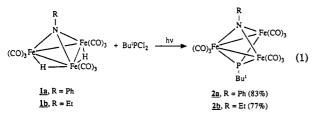
Preparation of the Triiron Phosphinidene–Imido Clusters $Fe_3(\mu_3-PBu^t)(\mu_3-NR)(CO)_9$ (R = Et, Ph) and Their Reactions with Alkynes


Jeong-Sup Song,[†] Gregory L. Geoffroy,^{*,†} and Arnold L. Rheingold[†]

Received October 2, 1991

The compounds $Fe_3(\mu_3$ -PBu¹)(μ_3 -NR)(CO)₉ (R = Ph (2a), Et (2b)), which are the first examples of clusters possessing both capping imido and phosphinidene ligands, have been prepared in good yield by the photochemical reaction of the corresponding H₂Fe₃-(μ_3 -NR)(CO)₉ cluster with Bu¹PCl₂. Cluster 2a has been crystallographically characterized: C₁₉H₁₄NO₉PFe₃, orthorhombic, *Pbc*2₁ (nonstandard *Pca*2₁), *a* = 12.109 (3) Å, *b* = 14.793 (5) Å, *c* = 12.982 (3) Å, *V* = 2325.3 (14) Å³, *Z* = 4, *R*(*F*) = 7.56%. Like Fe₃(μ_3 -NPh)₂(CO)₉, the cluster consists of an isosceles triangle of iron atoms with two Fe-Fe bonds and with capping phosphinidene and imido ligands above and below the metal triangle. Both clusters have been observed to react with alkynes to give a variety of products, the most interesting of which is the binuclear compound Fe₂(μ_2 , η^3 -PhNC(Ph)=C(Ph)PBu¹)(μ_2 , η^4 -PhC=C(Ph)C(Ph)=CPh)(CO)₄ (3) which results from the reaction of PhC=CPh with 2a. This species has been crystallographically characterized and shown to possess a chelating μ_2 , η^3 -PhNC(Ph)=C(Ph)PBu¹ ligand formed by insertion of the alkyne between the phosphinidene and imido ligands and also has a ferracyclopentadiene ligand formed by coupling of two additional alkynes: C₅₆H₄₄NO₄PFe₂, triclinic, PĪ, *a* = 10.353 (3) Å, *b* = 14.125 (4) Å, *c* = 20.391 (7) Å, α = 83.65 (2)°, β = 79.20 (2)°, γ = 68.27 (2)°, *V* = 2718.1 (15) Å³, *Z* = 2, *R*(*F*) = 5.83%.

Introduction


The chemistry of triiron clusters which possess capping phosphinidene (μ_3 -PR) and imido (μ_3 -NR) ligands has been extensively investigated in recent years.¹⁻⁵ The parent complexes in this family of compounds are the monocapped clusters Fe₃(μ_3 -ER)(CO)₁₀ (I) (E = N, P), which have three metal-metal bonds

and a μ_3 -CO ligand and the bicapped clusters Fe₃(μ_3 -ER)₂(CO)₉ (II) which possess only two metal-metal bonds. The capping ligands serve to retain the cluster integrity in a variety of reactions, although examples of alkyne^{1i-1,v,3c} and carbene^{1p,3a,b} insertion into iron-phosphinidene and iron-imido bonds are known. We have sought the preparation of a *mixed* phosphinidene-imido cluster so as to compare the reactivity of these two different capping ligands on the same molecule. Herein are reported the synthesis of the clusters Fe₃(μ_3 -NR)(μ_3 -PBu^t)(CO)₉ (R = Et, Ph), the crystallographic characterization of the phenyl derivative, and the reactivity of the compounds with several alkynes.

Results

Synthesis and Spectroscopic Characterization of $Fe_3(\mu_3-NR)(\mu_3-PBu^i)(CO)_9$ (R = Ph, Et). A number of strategies and reactions were explored in an attempt to prepare phosphinidene-imido clusters, but the only reaction which led to the desired product is that given in eq 1. This photochemical reaction gave

high-yield formation of the bicapped clusters 2a and 2b, along

with a minor product that has not been identified (see Experimental Section). These clusters were isolated as air-stable red-

- (a) Knoll, K.; Huttner, G.; Zsolnai, L.; Orama, O. J. Organomet. Chem. 1987, 327, 379. (b) Knoll, K.; Huttner, G.; Faessler, T.; Zsolnai, L. J. Organomet. Chem. 1987, 327, 255. (c) Knoll, K.; Huttner, G.; Zsolnai, L.; Orama, O.; Wasiucionek, M. J. Organomet. Chem. 1986, 310, 225.
 (d) Knoll, K.; Huttner, G.; Zsolnai, L.; Jibril, I.; Wasiucionek, M. J. Organomet. Chem. 1985, 294, 91. (e) Knoll, K.; Huttner, G.; Evertz, K. J. Organomet. Chem. 1987, 333, 97. (f) Knoll, K.; Huttner, G.; Zsolnai, L. J. Organomet. Chem. 1987, 332, 175. (g) Huttner, G.; Knoll, K. Angew. Chem. 1987, 99, 765. (h) Knoll, K.; Huttner, G.; Organomet. Chem. 1987, 329, 369. (i) Knoll, K.; Huttner, G.; Zsolnai, L. J. Organomet. Chem. 1986, 307, 237. (j) Knoll, K.; Huttner, G.; Zsolnai, L.; Orama, O. Angew. Chem. 1986, 98, 1099. (k) Knoll, K.; Orama, O.; Huttner, G.; Masiucionek, M.; Zsolnai, L. Muttner, G.; Zsolnai, L.; Orama, O. Angew. Chem. 1984, 96, 989. (l) Knoll, K.; Huttner, G.; Zsolnai, L. J. Organomet. Chem. 1986, 312, C57. (m) Knoll, K.; Huttner, G.; Wasiucionek, M.; Zsolnai, L. Angew. Chem., Int. Ed. Engl. 1984, 23, 739. (n) Knoll, K.; Faessler, T.; Huttner, G.; Imhof, W. J. Organomet. Chem. 1990, 388, 307. (p) Buchholz, D.; Huttner, G.; Zsolnai, L. J. Organomet. Chem. 1980, 381, 97. (q) Fassler, T.; Buchholz, D.; Huttner, G. J. Organomet. Chem. 1988, 347, 259. (t) Winter, A.; Zsolnai, L. J. Organomet. Chem. 1986, 368, C11. (a) Winter, A.; Jibril, I.; Huttner, G. J. Organomet. Chem. 1989, 369, 297. (r) Huttner, G. J. Organomet. Chem. 1988, 247, 259. (t) Winter, A.; Zsolnai, L.; Huttner, G. J. Organomet. Chem. 1982, 234, 337. (u) Huttner, G.; Schneider, J.; Mohr, G.; Von Seyerl, J. J. Organomet. Chem. 1980, 191, 161. (v) Lang, H.; Zsolnai, L.; Huttner, G. Chem. Ber. 1985, 118, 4426. (w) Huttner, G.; Knoll, K.; Faessler, T.; Berke, H. J. Organomet. Chem. 1988, 340, 223. (x) Knoll, K.; Faessler, T.; Berke, H. J. Organomet. Chem. 1988, 540, 223. (x) Knoll, K.; Huttner, G.; Wasiucionek, M.; Zsolnai, L. Angew. Che
- (a) Jaeger, J. Tilman; Powell, A. K.; Vahrenkamp, H. New J. Chem. 1988, 12, 405. (b) Wucherer, E. J.; Tasi, M.; Hansert, B.; Powell, A. K.; Garland, M. T.; Halet, Jean F.; Saillard, J. Y.; Vahrenkamp, H. Inorg. Chem. 1989, 28, 3564. (c) Bernhardt, W.; Vahrenkamp, H. Z. Naturforsch., B: Chem. Sci. 1988, 43, 643. (d) Jaeger, J. T.; Powell, A. K.; Vahrenkamp, H. Chem. Ber. 1988, 121, 1729. (e) Jaeger, J. T.; Field, J. S.; Collison, D.; Speck, G. P.; Peake, B. M.; Haetnle, J.; Vahrenkamp, H. Organometallics 1988, 7, 1746. (g) Deck, W.; Schwarz, M.; Vahrenkamp, H. Chem. Ber. 1987, 120, 1515. (h) Wucherer, E. J.; Vahrenkamp, H. Angew. Chem. 1987, 99, 353. (i) Jaeger, T.; Vahrenkamp, H. Z. Naturforsch., B: Anorg. Chem., Org. Chem. 1986, 41B, 789. (j) Jaeger, T.; Aime, S.; Vahrenkamp, H. Organometallics 1986, 5, 245. (k) De, R. L.; Vahrenkamp, H. Angew. Chem. 1984, 96, 961. (l) Bernhardt, W.; Vahrenkamp, H. Angew. Chem. 1984, 96, 362. (m) Mueller, M.; Vahrenkamp, H. Chem. Ber. 1983, 116, 2311. (n) Mueller, M.; Vahrenkamp, H. Chem. Ber. 1983, 116, 2765. (o) Mueller, M.; Vahrenkamp, H. Chem. Ber. 1983, 116, 2765. (o) Mueller, M.; Vahrenkamp, H. Chem. Ber. 1983, 116, 2748. (p) Mueller, M.; Vahrenkamp, H. Chem. Ber. 1983, 116, 2765. (o) Mueller, M.; Vahrenkamp, H. Chem. Ber. 1983, 116, 2765. (c) Mueller, M.; Vahrenkamp, H. Chem. Ber. 1983, 116, 2765. (c) Mueller, M.; Vahrenkamp, H. Chem. Ber. 1983, 116, 2765. (c) Mueller, M.; Vahrenkamp, H. Chem. Ber. 1983, 116, 2748. (p) Mueller, M.; Vahrenkamp, H. Chem. Ber. 1983, 116, 2748. (p) Mueller, M.; Vahrenkamp, H. Chem. Ber. 1983, 116, 2748. (p) Mueller, M.; Vahrenkamp, H. Chem. Ber. 1983, 116, 2748. (p) Mueller, M.; Vahrenkamp, H. Chem. Ber. 1983, 116, 2748. (p) Mueller, M.; Vahrenkamp, H. Chem. Ber. 1983, 116, 219. (r) Beurich, H.; Richter, F.; Vahrenkamp, H. Acta Crystallogr., Sect. B 1982, B38, 3012. (s) Vahrenkamp, H.; Wucherer, E. Angew. Chem. 1981, 93, 715.

[†]University of Delaware.

[‡]The Pennsylvania State University.

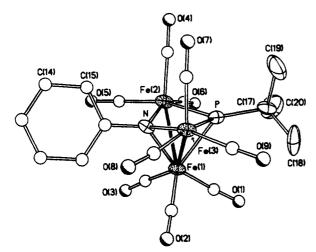


Figure 1. ORTEP drawing of $Fe_3(\mu_3-NPh)(\mu_3-PBu^1)(CO)_9$ (2a). Thermal ellipsoids are drawn at the 40% probability level.

Table I. Crystallographic Parameters for $Fe_{3}(\mu_{3}-NPh)(\mu_{3}-PBu^{t})(CO)_{9}$ (2a) and $Fe_2(\mu_2,\eta^3-PhNC(Ph)=C(Ph)PBu^t)(\mu_2,\eta^4-PhC=C(Ph)C(Ph)=CPh)$ -(CO)₄ (3)^a

	2a	3
formula	$C_{19}H_{14}NO_{9}PFe_{3}$	C ₅₆ H ₄₄ NO ₄ PFe ₂
space group	Pbc2 ₁ [nonstandard setting for Pca2 ₁ (No. 29)]	PĪ
a, Å	12.109 (3)	10.353 (3)
b, Å	14.793 (5)	14.125 (4)
c, Å	12.982 (3)	20.391 (7)
α , deg		83.65 (2)
β , deg		79.20 (2)
γ , deg		68.27 (2)
V, Å	2325.3 (14)	2718.1 (15)
Z	4	2
$D(calc), g/cm^{-3}$	1.710	1.146
temp, °C	23 (1)	23 (1)
$T(\max)/T(\min)$		1.081
radiation	Mo K α (λ =	Mo K α (λ =
	0.71073 Å)	0.71073 Å)
R(F), %	7.56	5.83
$R_{w}(F), \%$	7.53	6.30
${}^{a}R(F) = \sum_{i=1}^{n} (i)$	$ F_{\rm o} - F_{\rm c}) / \sum F_{\rm o} ; R_{\rm w}(F) = \sum ($	$ w^{1/2}(F_{\rm o} - F_{\rm c}))/$

 $(w^{1/2}|F_0)$.

brown solids which are readily soluble in CH₂Cl₂, THF, and hydrocarbon solvents. The structure of 2a has been confirmed by an X-ray diffraction study (see Figure 1 and below), and the spectroscopic data for the compounds (see Experimental Section)

- (a) Williams, G. D.; Geoffroy, G. L.; Whittle, R. R.; Rheingold, A. L. J. Am. Chem. Soc. 1985, 107, 729. (b) Williams, G. D.; Whittle, R. R.; Geoffroy, G. L.; Rheingold, A. L. J. Am. Chem. Soc. 1987, 109, 3936. (c) Song, J.-S.; Han, S.-H.; Nguyen, S.; Geoffroy, G. L.; Rheingold, A. L. Organometallics 1990, 9, 2386.
 (a) Bockman, T. M.; Wang, Y.; Kochi, J. K. New J. Chem. 1988, 12, 387. (b) Bockman, T. M.; Kochi, J. K. J. Am. Chem. Soc. 1987, 109, 7725. (c) Ohst, Holger H.; Kochi, Jay K. J. Chem. Soc., Chem. Commun. 1986, 121, (d) Ohst. H. H.; Kochi, J. K. Inorg. Chem. 1986, 121, (d) Ohst. H. H.; Kochi, J. K. J. Chem. Soc., Chem. Commun. 1986, 121, (d) Ohst. H. H.; Kochi, J. K. Marger Chem. 1986, 121, (d) Ohst. H. H.; Kochi, J. K. Marger Chem. 1986, 121, (d) Ohst. H. H.; Kochi, J. K. Marger Chem. 1986, 121, (d) Ohst. H. H.; Kochi, J. K. Marger Chem. 1986, 121, (d) Ohst. H. H.; Kochi, J. K. Marger Chem. 1986, 121, (d) Ohst. H. H.; Kochi, J. K. Marger Chem. 1986, 121, (d) Ohst. H. H.; Kochi, J. K. Marger Chem. 1986, 121, (d) Ohst. H. H.; Kochi, J. K. Marger Chem. 1986, 121, (d) Ohst. H. H.; Kochi, J. K. Marger Chem. 1986, 121, (d) Ohst. H. H.; Kochi, J. K. Marger Chem. 1986, 121, (d) Ohst. H. H.; Kochi, J. K. Marger Chem. 1986, 121, (d) Ohst. H. H.; Kochi, J. K. Marger Chem. 1986, 121, (d) Ohst. H. H.; Kochi, J. K. Marger Chem. 1986, 121, (d) Ohst. H. H.; Kochi, J. K. Marger Chem. 1986, 121, (d) Ohst. H. H.; Kochi, J. K. Marger Chem. 1986, 121, (d) Ohst. H. H.; Kochi, J. K. Marger Chem. 1986, 121, (d) Ohst. H. H.; Kochi, J. K. Marger Chem. 1986, 121, (d) Ohst. H. H.; Kochi, J. K. Marger Chem. 1986, 121, (d) Ohst. H. H.; Kanger Chem. 1986, 121, (d) Ohst. H. Ka (3)
- mun. 1986, 121. (d) Ohst, H. H.; Kochi, J. K. Inorg. Chem. 1986, 25, 2066. (e) Ohst, H. H.; Kochi, Jay K. Organometallics 1986, 5, 1359. (f) Ohst, H. H.; Kochi, J. K. J. Am. Chem. Soc. 1986, 108, 2897.
- (a) Aime, S.; Gervasio, G.; Milone, L.; Rossetti, R.; Stanghellini, P. L.
 J. Chem. Soc., Dalton Trans. 1978, 534. (b) Aime, S.; Milione, L.;
 Rosetti, R.; Stanghellini, P. L. Gazz. Chim. Ital. 1975, 105, 617. (c)
 Rossetti, R.; Stanghellini, P. L. J. Coord. Chem. 1974, 3, 217. (d) (5) Rossetti, R.: Stanghellini, P. L. J. Coord. Chem. 1974, 3, 217. (d)
 Sappa, E.; Milone, L. J. Organomet. Chem. 1973, 61, 383. (e) Smieja,
 J. A.; Gladfelter, W. L. Inorg. Chem. 1978, 25. (f) Alper, H.; Paik,
 H.-N. Nouv. J. Chim. 1978, 2, 245. (g) Landesberg, J. M.; Katz, L.;
 Olsen, C. J. Org. Chem. 1972, 37, 930. (h) Andrews, M. A.; Kaesz,
 H. D. J. Am. Chem. Soc. 1979, 101, 7255. (i) Bruce, M. I.; Humphrey,
 M. G.; Shawkataly, O. B.; Snow, M. R.; Tiekink, E. R. T. J. Organomet. Chem. 1986, 315, C51. (j) Clegg, W.; Sheldrick, G. M.; Stalke,
 D.; Bhaduri, S.; Khwaja, H. K. Acta Crystallogr., Sect. C: Cryst.
 Struct. Commun. 1984, C40, 2045. (k) Castiglioni, M.; Giordano, R.; Sappa, E. J. Organomet. Chem. 1991, 407, 377.

Table II. Atomic Coordinates (×10⁴) and Isotropic Thermal Parameters (Å² × 10³) for Fe₃(μ_3 -NPh)(μ_3 -PBu^t)(CO)₉ (2a)

arameters	(A A 10) 101	1 ¢3(µ3-111 µ)((24)
	x	у	Z	Ua
Fe(1)	1671.5 (17)	5426.4 (15)	2500	42.7 (7)
Fe(2)	1692.3 (17)	5233.8 (17)	4459.5 (19)	46.4 (8)
Fe(3)	3746.1 (16)	5170.3 (14)	2795.7 (21)	41.8 (7)
Р	2749 (3)	6195 (3)	3609 (4)	42 (1)
O (1)	771 (13)	7184 (9)	1925 (12)	105 (7)
O(2)	2230 (10)	4912 (9)	408 (8)	76 (5)
O(3)	-506 (11)	4598 (11)	2574 (13)	115 (7)
O(4)	3058 (11)	5148 (11)	6315 (11)	86 (6)
O(5)	191 (10)	3695 (8)	5019 (12)	91 (6)
O(6)	-16 (11)	6497 (9)	5223 (10)	32 (3)
O(7)	5281 (9)	4926 (8)	4483 (10)	79 (5)
O(8)	4464 (10)	3648 (7)	1489 (10)	72 (5)
O(9)	5107 (11)	6409 (9)	1575 (10)	74 (5)
N	2454 (8)	4556 (7)	3364 (9)	36 (4)
C(1)	1096 (16)	6467 (12)	2144 (13)	69 (7)
C(2)	2067 (12)	5109 (13)	1207 (12)	55 (6)
C(3)	370 (14)	4928 (13)	2581 (12)	61 (6)
C(4)	2523 (13)	5187 (12)	5583 (12)	56 (6)
C(5)	755 (14)	4299 (12)	4813 (13)	60 (6)
C(6)	641 (15)	6011 (13)	4956 (15)	70 (7)
C(7)	4697 (10)	4998 (12)	3808 (12)	51 (6)
C(8)	4164 (13)	4282 (10)	1968 (16)	63 (7)
C(9)	4550 (14)	5928 (14)	2039 (14)	68 (8)
C(11)	1986 (7)	3109 (7)	2541 (6)	63 (7)
C(12)	2000	2166	2547	63 (7)
C(13)	2455	1704	3382	90 (10)
C(14)	2895	2184	4211	88 (9)
C(15)	2881	3127	4205	56 (6)
C(16)	2427	3589	3370	39 (5)
C(17)	3052 (11)	7400 (12)	3832 (11)	52 (6)
C(18)	3315 (16)	7875 (11)	2823 (15)	106 (10)
C(19)	4009 (23)	7413 (16)	4591 (26)	181 (17)
C(20)	2068 (18)	7904 (16)	4319 (18)	114 (11)

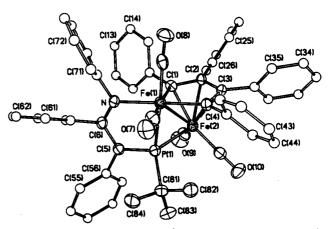
^a Equivalent isotropic U defined as one-third of the trace of the orthogonalized U_{ii} tensor.

Table III.	Selected Bone	d Distances	(Å) and	Angles (deg) for
$Fe_3(\mu_3-NP$	$h)(\mu_3 - PBu^t)(C$	CO), (2a)			

- 3 (F-3	7(
Bond Distances					
Fe(1)-Fe(2)	2.560 (2)	Fe(1)- $Fe(3)$	2.569 (3)		
Fe(1)-P	2.251 (4)	Fe(2)-P	2.209 (5)		
Fe(3)-P	2.207 (5)	Fe(1)-N	1.953 (11)		
Fe(2)-N	1.969 (12)	Fe(3)-N	1.954 (10)		
P-C (17)	1.843 (18)	N-C(16)	1.431 (15)		
Bond Angles					
Fe(2)-Fe(1)-Fe(3	8) 80.0 (1)	Fe(1)-P-Fe(2)	70.0 (1)		
Fe(1)-P-Fe(3)	70.4 (1)	Fe(2)-P-Fe(3)	96.5 (2)		
Fe(1)-N-Fe(2)	81.5 (4)	Fe(1)-N-Fe(3)	82.3 (4)		
Fe(2)-N-Fe(3)	114.3 (5)	P-Fe(1)-N	71.6 (3)		
P-Fe(2)-N	72.3 (3)	P-Fe(3)-N	72.6 (3)		
Fe(2)-Fe(1)-P	54.2 (1)	Fe(3)-Fe(1)-P	54.0 (1)		
Fe(2)-Fe(1)-N	49.5 (3)	Fe(3)-Fe(1)-N	48.9 (3)		
Fe(1) - P - C(17)	134.8 (5)	Fe(2)-P-C(17)	131.3 (5)		
Fe(3) - P - C(17)	129.1 (5)	Fe(1)-N-C(16)	130.6 (8)		
Fe(2)-N-C(16)	119.6 (8)	Fe(3)-N-C(16)	119.0 (7)		

are fully consistent with the determined structure. Cluster 2a also formed from the addition of $AgBF_4$ to a CH_2Cl_2 solution of 1a and $Bu^{t}PCl_{2}$, although the yield was low (23%). The mechanisms of these reactions have not been investigated, but it is important to note that reaction 1 proceeds well only under photochemical, but not thermal, conditions.

An ORTEP drawing of 2a is shown in Figure 1, and pertinent crystallographic details are given in Tables I-III. The structure of the molecule is similar to that previously determined for the bis(imido) cluster $Fe_3(\mu_3-NPh)_2(CO)_9^{5j}$ except that a μ_3 -phosphinidene ligand has replaced one of the μ_3 -imido ligands. There are two Fe-Fe bonds with distances of 2.560 (2) and 2.569 (3) Å, which are slightly longer than the 2.45-Å average Fe-Fe distance in $Fe_3(\mu_3-NPh)_2(CO)_9$.⁵ Similarly, the Fe(2)-Fe(1)-Fe(3) angle of 80.0 (1)° is slightly larger than the 76.7 (1)° angle reported for $Fe_3(\mu_3-NPh)_2(CO)_9$.⁵ The capping μ_3-NPh and


Table IV. Atomic Coordinates (×10⁴) and Isotropic Parameters (Å² × 10³) for Fe₂(μ_2, η^3 -PhNC(Ph)=C(Ph)PBu¹)-(μ_2, η^4 -PhC=C(Ph)C(Ph)=CPh)(CO)₄ (3)

$\mu_{2},\eta^{*}\text{-PhC} = C(Ph)C(Ph) = CPh)(CO)_{4} (3)$					
	x	у	Z	U^a	
Fe(1)	4301.6 (10)	3553.4 (7)	2432.8 (5)	37.9 (4)	
Fe(2)	6127.1 (10)	3561.7 (7)	3085.2 (5)	38.3 (4)	
ΡÌ	5498 (2)	2228 (1)	3090 (1)	39 (1)	
Ν	4894 (5)	2419 (4)	1773 (3)	40 (2)	
O(7)	1747 (6)	3120 (4)	2956 (3)	74 (3)	
O(8)	3064 (6)	5223 (4)	1491 (3)	75 (3)	
O(9)	9121 (5)	2479 (4)	2931 (3)	82 (3)	
O(10)	6244 (6)	3658 (4)	4486 (3)	77 (3)	
C(1)	6084 (6)	3928 (5)	2086 (3)	36 (3)	
C(2)	6063 (7)	4809 (5)	2363 (3) 2921 (3)	36 (3) 36 (3)	
C(3) C(4)	4947 (7) 3999 (7)	5172 (5) 4628 (5)	3066 (3)	42 (3)	
C(5)	6303 (7)	1253 (5)	2526 (3)	40 (3)	
C(6)	5842 (7)	1510 (5)	1893 (3)	39 (3)	
C(7)	2757 (8)	3303 (6)	2761 (4)	52 (4)	
C(8)	3547 (7)	4553 (5)	1843 (4)	47 (3)	
C(9)	7925 (7)	2898 (5)	2984 (4)	52 (3)	
C(10)	6172 (8)	3611 (5)	3933 (4)	54 (4)	
C(11)	8126 (5)	2620 (3)	1406 (2)	47 (3)	
C(12)	9033	2348	803	63 (4)	
C(13)	8848	3024	246	70 (5)	
C(14)	7755	3971 4243	292 895	70 (5) 53 (4)	
C(15) C(16)	6848 7033	3567	1452	41 (3)	
C(10) C(21)	8477 (5)	4876 (3)	2024 (3)	61 (4)	
C(21) C(22)	9351	5427	1772	84 (5)	
C(22)	8764	6465	1600	86 (6)	
C(24)	7305	6951	1680	73 (5)	
C(25)	6431	6400	1932	57 (4)	
C(26)	7018	5362	2104	42 (3)	
C(31)	5919 (4)	6021 (3)	3617 (2)	53 (4)	
C(32)	5816	6878	3934	66 (4)	
C(33)	4624	7763	3928	74 (5)	
C(34)	3535	7791	3605	74 (4) 58 (4)	
C(35) C(36)	3638 4830	6935 6050	3288 3294	58 (4) 41 (3)	
C(30) C(41)	1405 (6)	5317 (4)	3363 (2)	55 (4)	
C(41)	171	5763	3807	72 (4)	
C(43)	242	5920	4461	85 (5)	
C(44)	1548	5630	4671	77 (5)	
C(45)	2782	5183	4227	56 (4)	
C(46)	2710	5027	3573	44 (3)	
C(51)	8437 (6)	174 (4)	2984 (3)	59 (4)	
C(52)	9355	-765	3197	83 (5)	
C(53)	9103 7022	-1655	3142 2874	90 (5) 76 (5)	
C(54) C(55)	7933 7015	-1606 -666	2674	76 (5) 60 (4)	
C(55) C(56)	7267	224	2002	47 (3)	
C(61)	5442 (4)	372 (4)	1151 (3)	54 (4)	
C(62)	5946	-383	683	64 (4)	
C(63)	7385	-800	445	69 (4)	
C(64)	8321	-462	674	66 (4)	
C(65)	7817	293	1142	52 (4)	
C(66)	6377	710	1380	45 (3)	
C(71)	2893 (5)	2902 (4)	1196 (2)	57 (4)	
C(72)	2280	3214	618	78 (5)	
C(73)	3107	3299	7 _27	83 (5) 75 (5)	
C(74) C(75)	4549 5162	3072 2760	-27 551	75 (5) 58 (4)	
C(76)	4334	2675	1163	46 (3)	
C(81)	4829 (8)	1666 (5)	3910 (3)	51 (3)	
C(82)	3688 (8)	2550 (6)	4321 (4)	61 (4)	
C(83)	6020 (9)	1110 (7)	4316 (4)	71 (4)	
C(84)	4140 (9)	942 (6)	3761 (4)	69 (4)	

^aEquivalent isotropic U defined as one-third of the trace of the orthogonalized U_{ij} tensor.

 μ_3 -PBu^t ligands in **2a** lie above and below the Fe₃ plane, with the nitrogen atom being essentially equidistant from the three iron atoms (average 1.96 Å). However, the phosphorus atom is slightly closer to Fe(1) and Fe(2) [average 2.208 Å] than it is to Fe(3) [2.251 (4) Å].

Reaction of 2a and 2b with PhC=CPh and EtC=CEt. Cluster **2a** has been observed to slowly react with PhC=CPh in refluxing

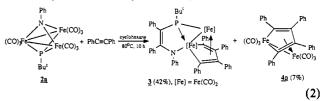
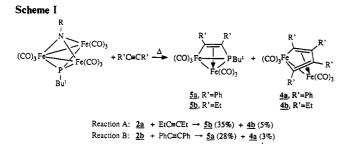


Figure 2. ORTEP drawing of $Fe_2(\mu_2,\eta^3$ -PhNC(Ph)=C(Ph)PBu^t)(μ_2,η^4 -PhC=C(Ph)C(Ph)=CPh)(CO)₄ (3). Thermal ellipsoids are drawn at the 40% probability level.

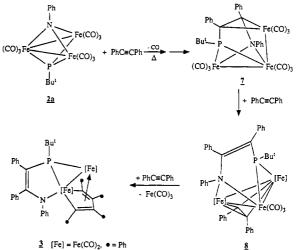
Table V. Selected Bond Distances (Å) and Angles (deg) for $Fe_2(\mu_2,\eta^3$ -PhNC(Ph)=C(Ph)PBu^t)(μ_2,η^4 -PhC=C(Ph)C(Ph)=CPh)-(CO)₄ (3)


- /4 (-/					
Bond Distances					
Fe(1)-Fe(2)	2.511 (2)	Fe(1)-P	2.277 (2)		
Fe(2)-P	2.208 (3)	Fe(1)-N	2.048 (6)		
Fe(1) - C(1)	2.083 (7)	Fe(1)-C(4)	2.001 (7)		
Fe(2)-C(1)	2.050 (7)	Fe(2)-C(2)	2.156 (6)		
Fe(2)-C(3)	2.169 (6)	Fe(2)-C(4)	2.165 (6)		
P-C(5)	1.749 (7)	P-C(81)	1.894 (7)		
N-C(6)	1.326 (7)	N-C(76)	1.424 (8)		
C(1)-C(2)	1.413 (10)	C(2)-C(3)	1.445 (8)		
C(3)-C(4)	1.427 (11)	C(5)–C(6)	1.423 (10)		
Bond Angles					
Fe(1)-P-Fe(2)	68.1 (1)	Fe(1)-Fe(2)-P	57.3 (1)		
Fe(2)-Fe(1)-P	54.7 (1)	Fe(1) - Fe(2) - C(1)) 53.2 (2)		
Fe(1) - Fe(2) - C(4)	50.0 (2)	Fe(1) - P - C(5)	102.1 (2)		
Fe(1) - N - C(6)	102.6 (5)	P-Fe(1)-N	81.6 (2)		
P-Fe(1)-C(1)	92.0 (2)	P-Fe(1)-C(4)	95.1 (2)		
P-Fe(2)-C(1)	94.9 (2)	P-Fe(2)-C(4)	92.6 (2)		
C(1)-Fe(1)-C(4)	79.8 (3)	C(1)-Fe(2)-C(4)	76.9 (2)		
Fe(1)-C(1)-C(2)	114.0 (4)	Fe(1)-C(4)-C(3)	116.0 (4)		
P-C(5)-C(6)	113.6 (4)	N-C(6)-C(5)	120.5 (6)		

cyclohexane to give the unusual binuclear complex 3, the known ferracyclopentadiene complex $4a^6$ (eq 2), and two other minor

products that have not been identified (see Experimental Section). Complex 3 was isolated as a crystallographically characterized brown solid, and its spectroscopic data (see Experimental Section) are fully consistent with the determined structure. An ORTEP drawing of 3 is shown in Figure 2, and pertinent crystallographic data are given in Tables I, IV, and V. The molecule consists of two Fe(CO)₂ units joined by an Fe-Fe bond [2.511 (2) Å] and bridged by μ_{2,η^2} -C₄(Ph)₄ and μ_{2,η^3} -PhNC(Ph)=C(Ph)PBu^t ligands. The former has formed by the coupling of two alkynes, whereas the latter results from insertion of the alkyne between the imido and the phosphinidene ligands. The data given in Tables IV and V indicate that the ferracyclopentadiene ring is similar

^{(6) (}a) Gmelin Handbuch der Anorganischen Chemie, 8th ed.; Fe, Organoiron Compounds, Binuclear Compounds 3; Springer-Verlag: Berlin, 1980; pp 24-61. (b) Fehlhammer, W. P.; Stolzenberg, H. In Comprehensive Organometallic Chemistry; Wilkinson, G., Stone, F. G. A., Abel, E. W., Eds.; Pergamon: Oxford, England, 1982; Vol 4, p 548ff.
(c) King, R. B.; Ackermann, M. N. J. Organomet. Chem. 1973, 60, C57. (d) Hubel, W.; Braye, E. H. J. Inorg. Nucl. Chem. 1959, 10, 250.


to that found in many other ferracyclopentadiene complexes (e.g., $Fe_2(CO)_6(\mu_2, \eta^4 - C_4(Ph)_4)).^6$ It is particularly noteworthy that although the valences of the nitrogen and phosphorus atoms are identical, the phosphorus atom binds in a bridging fashion as a μ_2 -phosphido ligand whereas the nitrogen atom bonds to a single iron as a terminal amido ligand. The P-Fe(2) distance of 2.208 (3) Å is slightly shorter than the P-Fe(1) distance of 2.277 (2) Å, although their 2.243-Å average is close to the 2.222-Å average reported for 67 other iron-phosphido bonds.^{7a} The Fe(1)-N distance of 2.048 (6) Å compares well to the 2.038-Å average Fe-N distance found in 78 Schiff base (σ -RN=CR₂) complexes. The coordination geometry about the amido ligand is trigonal planar (the sum of the angles about N is 359.8°), implying that the nitrogen lone pair is delocalized through π -bonding to the adjacent carbon atom and possibly to the iron atom. Consistent with this interpretation is the C(6)-N distance of 1.326 (7) Å, which compares well to the 1.337-Å average C-N distance found in pyridine and substituted pyridines.⁸ The C(5)-C(6) distance of 1.423 (10) Å corresponds to a bond order between 1 and 2,89 and the P-C(5) distance of 1.749 (7) Å is slightly shorter than normal P-C single-bond distances of 1.83-1.84 Å^{1m} but is not as short as a typical P=C double-bond distance of 1.68-1.74 Å.^{1m} Notably, the five-membered metallacycle Fe(1)-P-C(5)-C(6)-Nis nearly planar [maximum deviation (Å): Fe(1), 0.076; P, -0.078; C(5), 0.060; C(6), 0.029; N, -0.087].

In contrast to the above reaction with PhC=CPh, cluster 2a was observed to react with EtC==CEt to give mainly the known^{1v} binuclear complex $Fe_2(\mu_2,\eta^3-EtC=C(Et)PBu^t)(CO)_6$, (5a) (see reaction A in Scheme I) along with the ferracyclopentadiene complex $4b^6$ and two other minor products that have not been identified (see Experimental Section). The conversion of **2a** into 5a requires the loss of an imido ligand, but the fate of this moiety was not determined. Aniline and azobenzene would be likely products, but they were not detected in the reaction mixture by gas chromatographic analysis. Cluster 2b gave similar products in its reaction with PhC==CPh (see reaction B in Scheme I). The spectroscopic data for 5b indicate it to be similar to the known compound 5a.^{1v} The IR spectra of the two compounds are similar, and **5b** shows a parent ion in its mass spectrum at m/z = 434, consistent with the given formulation. The singlet at δ 132.1 observed in its ${}^{31}P{}^{1}H$ NMR spectrum compares well to the corresponding resonance at δ 131 for 5a.^{1v} The ${}^{13}C$ NMR spectrum of 5b showed two resonances at δ 128.2 and 119.2, assigned to the ring carbons, in addition to resonances due to the carbonyls, the phenyls, and the *tert*-butyl group.

Discussion

Although intermediates were not observed in the reactions described above, it is reasonable to suggest that in each case thermally-induced CO extrusion occurs to provide a coordination site for the added alkyne, followed by coupling of the μ_3 -capping ligands with the alkyne. Product 3 may form by the sequence of reactions shown in Scheme II, which involves intermediates

7 and 8 that are analogous to clusters that have been shown to form as stable products from the reaction of the related cluster $Fe_3(\mu_3-PR)_2(CO)_9$ with PhC=CPh.^{1e,i} The last step in Scheme II involves displacement of an Fe(CO)₃ unit by a third alkyne and coupling of the alkynes to form a ferracyclopentadiene ring, a reaction with considerable literature precedent.⁶ Complexes 5a,b must form by a different mechanism since the NR ligand is not incorporated into the products. We do not know at which stage degradation of the cluster framework occurs to form these complexes, but it is not likely that this reaction proceeds via decay of the intermediates 7 and 8.

Experimental Section

The compounds $H_2Fe_3(\mu_3-NPh)(CO)_9$ and $H_2Fe_3(\mu_3-NEt)(CO)_9$ were prepared by literature methods.^{5h} The reagents PhC=CPh, EtC=CEt, and AgBF₄ (Aldrich Chemical Co.) and Bu¹PCl₂ (Strem Chemicals, Inc.) were purchased from the indicated sources and used as received. Solvents were dried by standard methods, and all manipulations of compounds were performed under N₂ using standard Schlenk techniques unless otherwise specified. IR spectra were recorded on an IBM FT-IR 32 spectrometer operated in the absorption mode, NMR spectra were obtained on a Bruker AM 300 FT-NMR spectrometer, and electron impact (EI) and fast atom bombardment (FAB) mass spectra were recorded on an AEI-MS9 mass spectrometer. Photolyses were conducted in Pyrex Schlenk vessels using an unfiltered Hanovia 450-W medium-pressure Hg discharge lamp (Ace Glass, Inc.) in a Pyrex water-cooled immersion well. Gas chromatographic analyses were conducted on a Hewlett Packard 5890 gas chromatograph using a 3% SP-2100 prepacked column (Supelco, Inc.). Elemental analyses were performed by Galbraith Laboratories, Inc., Knoxville, Tenn.

Synthesis of $Fe_3(\mu_3-NPh)(\mu_3-PBu^t)(CO)_9$ (2a). Method A. A solution of Fe₃(µ-H)₂(µ₃-NPh)(CO)₉ (1a) (930 mg, 1.81 mmol) and Bu¹PCl₂ (330 mg, 2.1 mmol) in anhydrous THF (100 mL) was irradiated for 1 h using the above-described lamp with constant stirring during which time the solution turned from dark brown to dark red. The solvent was removed under vacuum, and the residue was chromatographed on neutral alumina (activated, Brockmann I, ~150 mesh) with pentane as eluent to give first a yellow band of an uncharacterized compound (3 mg; IR(pentane) ν_{CO} = 2064 (m), 2028 (vs), 2002 (s), 1976 (w) cm⁻¹; ¹H NMR (CD₂Cl₂) δ 1.68 (br)) followed by a red-brown band of the bicapped cluster 2a (902 mg, 83%).

2a. Anal. Calcd for C₁₉H₁₄Fe₃NO₉P: C, 38.11; H, 2.36. Found: C, 38.04; H, 2.91. IR (pentane): 2078 (w), 2048 (s), 2020 (vs), 2006 (s), 1988 (s), 1975 (m), 1944 (w) cm⁻¹. MS (EI): m/z = 599 (M⁺, ⁵⁶Fe). ¹H NMR (CD₂Cl₂): δ 7.35–6.81 (m, 5 H, Ph), 1.56 (d, 9 H, $J_{P-H} = 17$ Hz, Bu^t). ³¹P^{{1}H} NMR (CD₂Cl₂): δ 307.9.

Method B. To a solution of 1a (103 mg, 0.20 mmol) and Bu^tPCl₂ (48 mg, 0.30 mmol) in dry CH₂Cl₂ (50 mL) was added AgBF₄ (156 mg, 0.80 mmol). The solution was stirred for 15 h during which time the initial dark brown color changed to dark red. The solution was filtered through Celite, and the solvent was evaporated under vacuum. The residue was chromatographed on neutral alumina (activated, Brockmann I, ~150 mesh) with pentane as eluent to give a red-brown band of the bicapped cluster 2a in low yield (28 mg, 23%).

Synthesis of $Fe_3(\mu_3-NEt)(\mu_3-PBu^t)(CO)_9$ (2b). A solution of 1b (93 mg, 0.20 mmol) and Bu^tPCl₂ (48 mg, 0.30 mmol) in dry THF (50 mL)

Orpen, A. G.; Brammer, L.; Allen, F. H.; Kennard, O.; Watson, D. G.; (7) Taylor, R. J. Chem. Soc., Dalton Trans. 1989, S1: (a) entry 8.3.1.2 in Table 3; (b) entry 4.12 in Table 3. Allen, F. H.; Kennard, O.; Watson, D. G.; Brammer, L.; Orpen, A. G.;

⁽⁸⁾ Taylor, R. J. Chem. Soc., Dalton Trans. 1987, S1. Nyburg, S. C. X-ray Analysis of Organic Structures; Academic Press:

⁽⁹⁾ New York, 1961.

Triiron Phosphinidene-Imido Clusters

was irradiated for 1 h using the above described lamp and with constant stirring. The solution was worked up as described above for the preparation of **2a** to give upon chromatography a yellow band of an uncharacterized compound (2 mg; IR(pentane) $\nu_{CO} = 2065$ (m), 2028 (vs), 2000 (s), 1975 (w) cm⁻¹; ¹H NMR (CD₂Cl₂) δ 1.68–1.32 (br)) followed by a red-brown band of the bicapped cluster **2b** (85 mg, 77%).

2b. Anal. Calcd for $C_{15}H_{14}Fe_3NO_9P$: C, 32.71; H. 2.56. Found: C, 32.60; H, 2.64. IR (pentane): 2074 (w), 2040 (vs), 2023 (s), 1996 (vs), 1978 (m), 1962 (w) cm⁻¹. MS (EI): m/z = 551 (M⁺, ⁵⁶Fe). ¹H NMR (CDCl₃): δ 3.64 (q, 2 H, $J_{H-H} = 6.8$ Hz, NCH₂CH₃), 1.58 (t, 3 H, $J_{H-H} = 6.8$ Hz, NCH₂CH₃), 1.48 (d, 9 H, $J_{P-H} = 17.2$ Hz, Bu⁺). ³¹P{¹H} NMR (CDCl₁): δ 323.8.

Reaction of Fe₃(\mu_3-NPh)(\mu_3-PBu^t)(CO)₉ (2a) with PhC=CPh. A 100-mL Schlenk flask was charged with 2a (60 mg, 0.10 mmol) and diphenylacetylene (36 mg, 0.20 mmol) to which was added 60 mL of dry cyclohexane. The solution was refluxed under N₂ with stirring for 10 h, during which time the color changed from red-brown to dark brown. The solvent was removed under vacuum, and chromatographic workup of the residue (SiO₂, TLC, hexane/CH₂Cl₂ = 7/1) gave first a yellow band of the ferracyclopentadiene complex 4a (4.5 mg, 7%), a red-brown band of unreacted 2a (17 mg, 28%), and a brown band of the binuclear complex 3 (40 mg, 42%). These were followed by an additional yellow-brown band (6 mg; IR(CH₂Cl₂) \nu_{CO} = 2065 (s), 2026 (vs), 1998 (sh), 1988 (s), 1905 (w) cm⁻¹) and a dark green band (9 mg; IR(CH₂Cl₂) \nu_{CO} = 2015 (s), 1993 (vs), 1966 (s), 1836 (m) cm⁻¹; ¹H NMR (CD₂Cl₂) \delta 7.33-6.81 (m, Ph), 1.06 (d, J_{P-H} = 16.5 Hz, Bu⁺)) of compounds which were isolated by the solution of the tot dentified.

3. Anal. Calcd for $C_{56}H_{44}Fe_2NO_4P$: C, 71.73; H, 4.73. Found: C, 71.12; H, 4.20. IR (pentane): $\nu_{CO} = 2038$ (w), 2014 (m), 1981 (vs), 1964 (s), 1939 (m), 1591 (w) cm⁻¹. ¹H NMR (CD₂Cl₂): δ 7.35–6.79 (m, 35 H, Ph), 1.16 (d, 9 H, $J_{P-H} = 16.3$ Hz, Bu^t). MS (FAB): m/z = 937 (M⁺). ³¹P[¹H] NMR (CD₂Cl₂): δ 167.4.

4a. IR (pentane): $\nu_{CO} = 2065$ (m), 2023 (s), 1985 (vs), 1941 (w) cm⁻¹ (lit.^{6d} ν_{CO} (hexane) = 2074, 2026, 1981, 1929 cm⁻¹). MS (EI): m/z = 636 (M⁺).

Reaction of Fe₃(\mu_3-NPh)(\mu_3-PBu¹)(CO)₉ (2a) with EtC==CEt. A 100-mL Schlenk flask was charged with 2a (60 mg, 0.10 mmol) and EtC==CEt (20 mg, 0.24 mmol) to which was added 60 mL of dry cyclohexane. The solution was refluxed under N₂ with stirring for 10 h and then worked up as described above for the reaction of 2a with PhC==CPh to give first a yellow band of the ferracyclopentadiene complex 4b (2 mg, 5%), a yellow band of the known complex 5b (16 mg, 35%), and a red-brown band of unreacted 2a (22 mg, 37%). These were followed by an additional dark brown band (2 mg; IR (CH₂Cl₂) \nu_{CO} = 2049 (w), 2034 (m), 1988 (s, sh), 1971 (vs), 1957 (s), 1932 (s), 1882 (w) cm⁻¹) and a green band (5 mg; IR (CH₂Cl₂) \nu_{CO} = 2038 (m), 2011 (w), 1976 (m), 1965 (vs), 1951 (s), 1920 (m) cm⁻¹) of unidentified compounds.

1965 (vs), 1951 (s), 1920 (m) cm⁻¹, of undernified compounds. **sb.** IR (pentane): $\nu_{CO} = 2057$ (s), 2015 (s), 1989 (s), 1973 (vs), 1961 (m), 1933 (w) cm⁻¹. MS (EI): m/z = 450 (M⁺). ¹H NMR (CD₂Cl₂): δ 2.51 (dq, 2 H, $J_{H-H} = 7.5$ Hz, $J_{H-P} = 3.0$ Hz, CH_2CH_3), 2.06 (dq, 2 H, $J_{H-H} = 7.4$ Hz, $J_{H-P} = 14.8$ Hz, CH_2CH_2), 1.47 (d, 9 H, $J_{P-H} = 18.3$ Hz, Bu¹), 1.39–1.21 (m, 6 H, CH₂CH₃). ⁻⁻P[¹H] NMR (CD₂Cl₂): δ 131.2 (lit.¹ν_{CO} (pentane) = 2059 (s), 2017 (vs), 1990 (s), 1974 (s), 1962 (w), 1928 (vw) cm⁻¹; ³¹P[¹H] NMR (toluene) δ 131). **4b.** IR (pentane): $\nu_{CO} = 2062$ (m), 2023 (s), 1986 (vs), 1938 (w) cm⁻¹ (lit.⁶ ν_{CO} (hexane) = 2069, 2031, 1984, 1930 cm⁻¹). MS (EI): m/z = 444 (M⁺).

Reaction of Fe₃(\mu_3-NEt)(\mu_3-PBu¹)(CO)₉ (2b) with PbC=CPh. A 100-mL Schlenk flask was charged with 2b (52 mg, 0.10 mmol) and PhC=CPh (36 mg, 0.20 mmol) to which was added 50 mL of dry *n***-hexane. The solution was refluxed under N₂ with stirring for 15 h and then worked up as described above for the reaction of 2a with PhC=CPh to give first a yellow band of the ferracyclopentadiene complex 4a (2 mg, 3%), a yellow band of the binuclear complex 5a (12 mg, 28%), and a red brown band of unreacted 2b (24 mg, 55%). These were followed by an additional orange band (5 mg; IR(pentane) \nu_{CO} = 2051 (m), 2008 (vs), 1994 (s), 1970 (w), 1940 (w), 1846 (m) cm⁻¹; ¹H NMR (CD₂Cl₂) \delta 7.52-6.97 (m, Ph)) of an as of yet unidentified product.**

5a. Anal. Calcd for $C_{24}H_{19}Fe_2O_6P$: C, 66.36; H, 4.41. Found: C, 66.14; H, 4.01. IR (pentane): $\nu_{CO} = 2057$ (s), 2019 (vs), 1991 (s), 1966 (s), 1957 (m), 1932 (w) cm⁻¹. ¹H NMR (CD₂Cl₂): δ 7.26-7.05 (br, 10 H, Ph), 1.39 (d, 9 H, $H_{P-H} = 19$ Hz, Bu⁴). ¹³C NMR (CD₂Cl₂): δ 212.9, 209.6 (Fe-CO), 136.1, 130.7, 130.6. 130.3, 128.5, 127.7, 127.2 (Ph), 128.2 (d, $J_{P-C} = 14.6$ Hz), 119.2 (CPh), 36.5 (d, $J_{P-C} = 12.2$ Hz, PC-(CH₃)₃), 29.6 (d, $J_{P-H} = 4.9$ Hz, PC(CH₃)₃). ³¹P NMR (CD₂Cl₂): δ 132.1. MS (EI): m/z = 434 (M⁺).

Crystal and Molecular Structures of 2a and 3. Crystallographic data for both structures are presented in Table I. Weakly diffracting specimens of both were mounted on glass fibers. Photographic characterization revealed mmm and I Laue symmetry for 2a and 3, respectively. E statistics for 2a suggested the noncentrosymmetric alternative of the two space groups ($Pbc2_1$ and Pbcm) indicated by systematic absences in the diffraction data. The potential mirror plane in the structure of 2a is not perpendicular to the c axis; refinement suggested that the noncentrosymmetric alternative was preferable. 3 was assumed to be centrosymmetric and was well-behaved. Empirical corrections for absorption were applied to both data sets.

Both structures were solved by direct methods. For 3, two groups of atoms were found that probably represent disordered solvent molecules. These atoms are labeled CA and CG and were arbitrarily refined as full occupancy carbon atoms, but no chemical identity could be assigned from the crystallographic data. These contributions were not included in the calculated density. For both structures, all non-hydrogen atoms were refined with anisotropic thermal parameters, and the phenyl rings were constrained as rigid planar hexagons.

All computations used the SHELXTL (Version 5.1) program library (G. Sheldrick, Nicolet (Siemens), Madison, WI).

Acknowledgment. We thank the Department of Energy for support of this research and the National Science Foundation for partial support for the purchase of the X-ray diffractometer at the University of Delaware.

Supplementary Material Available: For 2a and 3, tables of crystallographic parameters, bond lengths and angles, anisotropic and isotropic thermal parameters, and H atom coordinates (11 pages); tables of observed and calculated structure factors (20 pages). Ordering information is given on any current masthead page.